
An Agda implementation of deletion in
Left-leaning Red-Black trees

Julien Oster, Ludwig-Maximilians-Universität München

March 22, 2011

We present an implementation of deletion in Left-leaning Red-Black-trees
in Literate Agda, based on a modified data structure originally by Ek et al.
[2009], and explain in detail how Agda ensures correctness by definition of
the algorithm.

1 Introduction and Related Work

Red-Black trees have become an ubiquitous data structure to implement ordered sets
and maps, yet they are also known for leading to unwieldy and complex implementations
that are prone to bugs, especially for deletion. Sedgewick [2008] realizes this and presents
a new variant of the Red-Black tree, the Left-leaning Red-Black tree, that aims at
keeping the known complexity of implementations down by reducing the number of
possible node configurations.

Kahrs [2001] showed how some invariants of Red-black trees can be part of the data
type, which ensures correctness (wrt. the invariants) of any code written using these
data types. Ek et al. [2009] presented an implementation in Agda, using the full power
of a dependent type system to implement all invariants as part of the data type, and
implemented some simple operations and insertion using that data type.

This project thesis formalizes an algorithm for deletion in Left-leaning Red-Black trees
in Agda. We revisit and modify the data structure by Ek et al. [2009], that provides
correctness by definition for algorithms working on LLRBs. The so established internal
logic ensures that our deletion algorithm does not violate any invariants pertaining to
Left-leaning Red-Black trees.

1

2 Left-Leaning Red-Black Trees

Left-Leaning Red-Black trees were introduced by Sedgewick [2008] as Red-Black trees
with an additional invariant: Only left children of black nodes can have a red color, all
right children are required to be black. Hence, they do not only remove the possibility
of 4-nodes in a tree (represented by a black node with two red children), but also the
ambiguous representation of 3-nodes by a black node with either a left or a right red
child. This greatly reduces the number of possible cases, and we will make use of that
in an algorithm that heavily relies on pattern matching of tree segments.

For reference, Left-Leaning Red-Black trees can be summarized as binary trees with
the following invariants:

1. The Left-Leaning Red-Black invariant, which specifies that every left child node
of a black node in the tree can be red or black, and that all other nodes, including
the root, must be black. Leafs (which contain no data) are always black.

2. The Black Height invariant, which assigns a black height to each node as the
number of black nodes on every downward path from that node to a descendant
leaf, and consequently requires that the black heights of both children of every
node are equal. Leafs are defined to have a black height of zero.

3. The Search Tree invariant, which allows only nodes with smaller keys left and
only nodes with greater keys right of any node in the tree, thus keeping the tree
ordered.

We will show in detail how each of these invariants is kept.

3 Imports

The following code, hereby presented in Literate Agda, uses the following imports:

open import Data.Bool using (Bool; true; false; if_then_else_)

open import Data.List

open import Data.Nat hiding (_¤_; _<_; _
?
�_; compare)

open import Data.Product

open import Data.Unit hiding (_
?
�_)

open import Level

open import Relation.Binary hiding (_ñ_)

open import Relation.Nullary

2

4 The data type for LLRBs

The data type used for representing Left-leaning Red-Black trees uses correctness by
definition as a technique to embed all invariants that make up a valid Left-leaning
Red-Black tree in the data type and its constructors itself. Thus, every function that
creates or transforms LLRB trees using this data type will only type check if every
invariant is proven as part of its definition.

While we present the tree data type in full detail, we will also look at the various
differences to the original data type as specified by Ek et al. [2009].

First, let us declare the module in which the data type and all code is contained.

module llrb-delete-julien-oster

(order : StrictTotalOrder Level.zero Level.zero Level.zero) where

To understand the module’s parameterization, let us first look at what we would need
to allow the tree’s key type to be fully specified by a user of the module, and not fixed
to e.g. an integer type:

• a type (the key type),
• an order and an equivalence relation onto the key type,
• a function for comparing values,
• another function for applying the transitivity of the order relation.

This allows any type to fill out the role as a key, as long as we can also provide
everything else listed above. To achieve this, we could make every item an explicit
parameter to the module (as done by Ek et al. [2009]).

However, it is very often the case that a satisfying data type brings its common order
relation with it, together with a function to compare and means to apply transitivity.
For example, on the type of natural numbers this would be its common strict total
order relation , which orders natural numbers from smaller to greater.

We therefore choose to use a single StrictTotalOrder (as defined in the Standard
Library) as a parameter instead. This particular record type fits well because it contains
all of the above as fields of itself. The added benefit is that the module now more
neatly fits into the Standard Library.

By subsequently opening the record, all relevant fields (such as _<_, _
?
�_, trans,

compare) are available to us in the namespace of our module, without having to specify
the name order:

3

open module sto = StrictTotalOrder order

A = StrictTotalOrder.Carrier order

The second line allows us to also refer to the StrictTotalOrder’s carrier, which is the
type used to store the node’s keys, simply as A in our namespace.

Next, we define what bounds are:

LowerBounds = List A

UpperBounds = List A

Bounds are just simple lists of values (of our key type, A). A value being within those
bounds means that it is greater (LowerBounds) or smaller (UpperBounds) than all
elements in the respective list. However, this simple list type doesn’t reflect that yet.
To achieve this, we want to get types for proofs out of these bounds, whose inhabitants
we can later require as part of our nodes.

Requiring the proofs is what keeps our trees consistent with the search tree invariant:
The tree type will be parameterized with each of both bounds lists. Then, any node
constructor which contains a key (i.e. any constructor except for the leaf constructor)
must contain proofs that its key is within LowerBounds and UpperBounds. Moreover,
every non-leaf constructor which creates a node also specifies a left and a right subtree
as children, but the bounds list in the type of those children (UpperBounds for the left
child, LowerBounds for the right child) is the parent’s bounds list, prepended with the
key of this node. Conclusively, every subtree must now not only satisfy the original
bounds of its parent node, but additionally all keys within it must now also be smaller
(if it is a left subtree) or greater (if it is a right subtree) than its parent’s key!

The types of these proofs are gained with the following operators:

infix 5 _isleftof_

isleftof : A Ñ UpperBounds Ñ Set

z isleftof [] = J

z isleftof b :: β = z < b � z isleftof β

infix 5 _isrightof_

isrightof : A Ñ LowerBounds Ñ Set

z isrightof [] = J

z isrightof b :: γ = b < z � z isrightof γ

4

Looking just at UpperBounds, proving that a value is within particular bounds means
supplying a proof that the value is smaller than the head of its bounds list and,
inductively, that it is within the rest of the bounds list. A value is always within empty
bounds (thus the type is the trivially provable J in that case).

The same applies to LowerBounds, except that the list’s head and the given value are
now reversed in the relation (thus, the value must be greater).

A key difference between the bounds definition by Ek et al. [2009] and this one is that
there are now two bounds lists instead of just one. [Ek et al., 2009] defined the single
bounds type to contain either constraints in any order, by not keeping simple lists of
values, but having different constructors for bound values that a value has to be “left”
or “right” of. Subsequently, the tree type was only parameterized with the one bounds
list and each inner node constructor only needed to specifies one proof instead of two,
the proof that its key value is within the given bounds.

The reason why we choose to abandon this approach in favor of two explicit lists of
bounds will get clear after we look at the reasons for handling transformations of them.

For that, we need data structures that represent proofs of how one list of bounds
may imply another. Before we further elaborate on this subject, let us state that the
interpretations of these data structures are the following: Given proof that β ñl β1 and
that x isleftof β, we conclude that x isleftof β1. and given proof that β ñ rβ1 and that
x isrightof β, we conclude that x isrightof β1.

infix 5 _ñr_

data _ñr_ : UpperBounds Ñ UpperBounds Ñ Set where

 : @ {γ} Ñ γ ñr γ
keep_ : @ {γ γ’ b} Ñ γ ñr γ’ Ñ b :: γ ñr b :: γ’
skip_ : @ {γ γ’ b} Ñ γ ñr γ’ Ñ b :: γ ñr γ’
cover_,_ : @ {β β’ x y} Ñ x < y Ñ x :: y :: β ñr β’

Ñ x :: β ñr β’

infix 5 _ñl_

data _ñl_ : LowerBounds Ñ LowerBounds Ñ Set where

 : @ {β} Ñ β ñl β
keep_ : @ {β β’ b} Ñ β ñl β’ Ñ b :: β ñl b :: β’
skip_ : @ {β β’ b} Ñ β ñl β’ Ñ b :: β ñl β’
cover_,_ : @ {γ γ’ x y} Ñ x < y Ñ y :: x :: γ ñl γ’

Ñ y :: γ ñl γ’

Transforming bounds into other (implied, non-contradictory) bounds is needed, because
when reconfiguring a tree into another, the bounds of individual nodes may change,
while the overall relation between them stays intact (otherwise, we would break the
search invariant).

Let’s look at a valid transformation of a simple tree:

5

b

c a c

b d --> d

a f e

e g f

g

It is clear that while the shapes of the trees are vastly different, they still retain the
same order relations between their elements and thus the search tree invariant has been
kept. They are both valid representations of the same data.

However, let’s look at the bounds list of node e’s tree type. We hereby assume that
the bounds for the root element of the left tree, c, are contained in the unknown lists
β and γ for min and max bounds, respectively. In the left tree, the bounds lists for e

look like that:

lower: c :: d :: β
upper: f :: γ

With every level down, the parent’s key is prepended to the respective bounds list
(depending on whether the child is left or right). Thus, according to the resulting lists,
e must be smaller than f, but greather than c and d. a, b and g are not appearing
because they are not on the path between the root and e, and thus never handed down.
e must also be within β and γ, the bounds for the whole tree.

On the right tree, the bounds lists are:

lower: b :: c :: d :: β
upper: γ

Node f, formerly a bound, is now a child of e, and thus fell out of its bounds (the roles
have been reversed: f must now satisfy e’s bounds, reflected in f’s type instead). In
fact, along the path from the root to e, e is now the node with the largest key, and the
upper bounds list has simply become γ, which must still be satisfied knowntheless.

On the other hand, due to the rotation of b into the path as the new root node, b now
appears in the min bounds list, where it formerly didn’t at all.

It is clear that we cannot just take the old bounds as parts of the new tree.

6

To allow operations like insertion or deletion of elements (which may change the shape
of subtrees, or even the whole tree) without pulling apart and reconstructing everything,
we need a way to show that the original relations (manifested by the original bounds)
are suitable, or imply, the relations/bounds in our new shape.

The rules defined above exist for that purpose. They are a series of rules that are
stringed together to form a proof that an original list of bounds satisfies a new one,
which is manifested by the node’s type at its place in the new tree (recall that the
parent node essentially dictates the type of its children).

For ease of explanation however, we discard the notion that the aforementioned data
type represents proofs of the old bounds implying the new bounds, and regard them
as operations to transform the original list into the new one instead. We describe a
constructor as an operation on a current bound, which is initially the head of the list
and may be advanced to the next one by the operation itself. This next bound may be
the original next one or a new one, inserted by a previous step.

The operations are as follows:

keep Keep the current bound and move on to the next.

skip Skip the current bound, because it is not needed anymore (possibly because its
node has been moved out of the path, or completely removed). The current
bound is now the formerly following bound.

cover Insert a new bound after the current bound, because a new node appeared along
the path to the root (similarly to above, it may have been moved in or is a new
node). This is allowed in the case that the current bound is already a better
bound than the new one: Let a be any lower bound for x. If b a, then b x
due to transitivity, and b is also a lower bound for x. Analog with upper bounds.
This operation requires us to specify a proof of b a. The current bound is still
the former, better bound, so that it may be involved in another step.

 Keep the rest of the bounds, starting from the current one, as it is. (Actually, this
constructor is read as “q.e.d.” because it marks the end of the proof.)

Going back to the example above, we can transform the upper bounds with skip and
the lower bounds with cover b<c , keep keep , or simply cover b<c , , and we
know that the required proof b<c is actually extractable from former tree, from the
simple fact that b is a left child of c.

Another example lets us now illustrate the decision for representing the bounds with
two lists instead of one. Given the following tree transformation:

7

b d

a d --> b e

c e a c

Despite the transformation, the bounds for node c in both trees are:

lower: b :: β
upper: d :: γ

Whereas the representation used by Ek et al. [2009], which effectively denotes the path
back to the root, would yield to the differing lists leftOf d :: rightOf b :: β for
the left tree and rightOf b :: leftOf d :: β for the right tree.

This necessitated the need for another rule, the swap rule, which was used to prove that
the position of bounds inside the list was irrelevant by allowing to swap the position
of two consecutive bounds. However, in more complex transformations that change
the shape of a tree significantly, parent nodes can change their position by more than
one tree level (while still staying in a node’s path to the root), resulting in a lot of
applications of swap.

Moreover, in the case that only lower or only upper bounds changed, superfluous keep
applications were necessary to disregard bounds of the other kind.

With separate bounds, the invariant ordering of the lists renders swap futile, and we
may look at only one kind of bounds and keep the other ones as they are, a situation
which frequently arises.

The futility also results in the proof system’s linearity, which greatly increases the
chances for Agda’s term searching solver, Agsy, to find the proofs.

Finally, we define the intepretation of our bounds implication proof data structure,
which changes the proof type obtained by _isleftof_ or _isrightof_ according to
the new bounds lists:

[[_]]r : @ {β β’} Ñ β ñr β’ Ñ (x : A) Ñ x isleftof β Ñ x isleftof β’
[[]]r z p = p

[[keep h]]r z (p1 , p2) = p1 , [[h]]r z p2
[[skip h]]r z (_ , p) = [[h]]r z p

[[cover q , h]]r z (p1 , p) = [[h]]r z (p1 , trans p1 q , p)

8

[[_]]l : @ {γ γ’} Ñ γ ñl γ’ Ñ (x : A) Ñ x isrightof γ Ñ x isrightof γ’
[[]]l z p = p

[[keep h]]l z (p1 , p2) = p1 , [[h]]l z p2
[[skip h]]l z (_ , p) = [[h]]l z p

[[cover q , h]]l z (p1 , p) = [[h]]l z (p1 , trans q p1 , p)

Given a value x and a proof that the old bounds imply the new ones (or, w.r.t. the
terminology above, operations to transform the list) and a proof that x lies within the
old bounds, we obtain a proof that x lies within the new bounds.

As with any function in Agda, we can read the types for the functions above as
proposition. The first function for example can be read as, roughly: Given proof that
β ñl β1 and that x isleftof β, we conclude that x isleftof β1–and this is exactly what we
stated as the interpretation for our proof data structure above!

The final step towards our tree data structure is the simple definition of the data type
for a tree node’s color:

data Color : Set where

red : Color

black : Color

So that now have everything together for the tree data type itself. The head is thus:

data Tree’ (β : UpperBounds) (γ : LowerBounds) : Color Ñ N Ñ Set where

The tree is parameterized by the two respective bounds lists, which are directly the
bounds for its root node and by extension part of all descending node’s bounds.

Furthermore, we index each node by its color and its black height. These two values
on which a tree node depends on are used to maintain the Left-leaning Red-Black
invariant and the black height invariant of an LLRB tree.

In the data type’s body, we start with the definition of a leaf node, as it is simplest:

lf : Tree’ β γ black 0

9

The leaf node constructor has no arguments, as it has no children, its black height is
always 0 and (because it contains no key and is always trivially within bounds) needs
no proof to satisfy the search three invariant. Its color is, by definition, always black.

A red node is more interesting:

nr : @ {n}(a : A) Ñ a isleftof β Ñ a isrightof γ
Ñ Tree’ (a :: β) γ black n Ñ Tree’ β (a :: γ) black n

Ñ Tree’ β γ red n

It contains the following data:

• The black height n, which is implicit to the constructor and can be inferred by
the children’s black height. A red node doesn’t add to a tree’s black height, so a
red node’s black height is equal to that of its children (which must both have the
same black height n).

• A key value a of type A.
• A proof that the key value is within upper bounds (remember that a isleftof β

gives us the type for a proof that a is within the upper bounds given by β), as
well as a proof that it is within the lower bounds (γ).

• A left child, whose upper bounds are prepended by this node’s key value. Con-
sequently, all nodes within this node’s left child tree must not only satisfy this
node’s original bounds, but also be smaller than the this node’s key, a. Note that
the left bounds remain untouched. Because a red node is only allowed to contain
black nodes, the left child is forced to be a black node.

• A right child, for which the same applies, except that a is prepended to the lower
bounds instead. It must also be a black node, though not only because its parent
is red, but because in the LLRB tree variant, right children in general must be
black.

Black (non-leaf) nodes are similar:

nb : @ {leftSonColor n}(a : A) Ñ a isleftof β Ñ a isrightof γ
Ñ Tree’ (a :: β) γ leftSonColor n Ñ Tree’ β (a :: γ) black n

Ñ Tree’ β γ black (suc n)

Because the constructor is quite similar to those of red nodes, we will only look at the
differences.

First, while we still implicitly gather the black height from its children (which must
still be equal among them), the resulting black height for a black node seen as a tree

10

is now suc n, that is, the children’s black height plus 1, resulting simply because the
black node itself adds to it.

Second, while the right child’s color is still constrained to be black, the left child may
now be red or black. The implicit argument leftSonColor may be inferred by the left
child’s type. 1

We now have a full data type for generic Left-leaning Red-Black trees that internally
enforces all required invariants:

1. The Left-Leaning Red-Black invariant is enforced because the tree is indexed
with its color, which is specified as black for all right child nodes in general and
all left child nodes if they are children of a red node.

2. The Black Height invariant is maintained by having the tree type indexed with
it, and specifying it as the same as both the children’s black height in case of a
red node or one more in case of a black node.

3. The Search Tree invariant must be kept satisfied by maintaining bounds along
all tree nodes and the requirement to specify proofs that all respective keys are
within those bounds.

Finally, we would like to have operators which take a subtree and transform its bounds
by providing a proof that derives the new bounds, so that it may be used as part of a
differently configured tree:

infixl 3 _<,_

<, : @ {β β’ γ c n} Ñ Tree’ β γ c n Ñ β ñr β’ Ñ Tree’ β’ γ c n

lf <, φ = lf

nr x pxl pxr l r <, φ =

nr x ([[φ]]r x pxl) pxr (l <, keep φ) (r <, φ)
nb x pxl pxr l r <, φ =

nb x ([[φ]]r x pxl) pxr (l <, keep φ) (r <, φ)

infixl 3 _<,,_

<,, : @ {β γ γ’ c n} Ñ Tree’ β γ c n Ñ γ ñl γ’ Ñ Tree’ β γ’ c n

lf <,, φ = lf

nr x pxl pxr l r <,, φ =

nr x pxl ([[φ]]l x pxr) (l <,, φ) (r <,, keep φ)
nb x pxl pxr l r <,, φ =

nb x pxl ([[φ]]l x pxr) (l <,, φ) (r <,, keep φ)

1As with any implicit argument, however, it may also be explicitly specified instead. In this case,
this may faciliate pattern matching where we would later like to match against a black left child.
By explicitly specifying the leftSonColor, we avoid the need for two similar patterns, one which
matches a leaf child (lf) and one which matches a non-leaf child (nb).

11

Note that until now, we have been exclusively dealing with subtrees. Standalone trees
must follow the same constraints, but with an additional invariant: the root node
must always be black. To implement that invariant, we define a separate data type for
standalone trees:

data Tree : Set where

tree : @ {n} Ñ Tree’ [] [] black n Ñ Tree

Because standalone trees are by definition never part of any other tree that could
impose further bounds on it, the root’s bounds lists are empty.

Exporting only this data type and all top level functions that use it effectively hides
our implementation of the invariants from users of the module.

5 Deletion

There already is an algorithm for deletion available, which Sedgewick [2008] presented
alongside his introduction to Left-Leaning Red-Black trees. This algorithm, however,
while being pretty concise, follows a very imperative approach, containing a lot of
nested if-else-blocks and breaking several invariants during its run by design, later
fixing everything up using several auxiliary functions.

Translating this algorithm into Agda code is possible, but doing so would require
immediate data structures to hold various tree structures with broken invariants, along
with tedious proofs for those data structures and auxiliary fix-up functions.

Instead, we follow an approach which is closer to what Okasaki [1999] did with his
seminal, purely functional implementation of insertion in Red-Black trees. That is, our
algorithm relies purely on pattern matching and simple recursive decent. Moreover, of
the three functions it consists of, the two which implement the algorithm’s bulk are
completely self-contained, i.e. do not rely on auxiliary functions.

During recursion we match for certain segments, which are just tree portions encom-
passing a specific black height, and apply a recursive call on a smaller subtree which
will be part of the remaining path. Depending on the result, we reconfigure the visited
segment so as to incorporate the result without breaking any invariants.

The immediate downside of this approach is the sheer number of cases pertaining to
differently shaped tree segments that have to be taken care of, making the algorithm
seem long and complex at first. This, however, is merely superficial: The algorithm
only follows a very simple pattern of recursive descent and Agda’s coverage checking

12

ensures that none of the possible case have been forgotten, which in themselves aren’t
hard. Thanks to the linearity of the domain specific proof language for bound coercion,
most of the proofs can be found by using Agda’s term search solver, Agsy.

While we do not include any formal proof for one property of the algorithm, namely
that it always does delete exactly the node with the given key in a tree that contains
one (a proof as part of the Agda source code remains future work for now), this can
easily be checked informally due to an additional property of the algorithm: The only
time a node is really removed from a tree is when a base case has been reached, in every
other case we follow a single tree path until we reach such a base case–possibly taking
a matching node along as part of the reconfigurations that happen during descent.

Thus, checking that the node with the right key is removed means just checking if the
simple base cases omit said node when building their result, and checking that no other
node is affected means just checking whether all non-matching nodes are included in
the result of every case.

(Also currently missing is a formal proof for the algorithm’s termination. This would
be possible with just minimal changes to the source by using Sized Types and is only
due to a bug in Agda, present at the time this thesis was written. In the meantime, we
just have to check that every recursive call happens on a smaller subtree.)

We will now take a detailed look at the algorithm itself, starting with its two helper
functions, which implement the bulk of the algorithm.

6 Extracting the minimum node

Our first look is at extractMinR, a function that shall extract the minimum key from
a red tree. It returns the minimum key and a modified tree, in which the node which
carried this key has been deleted.2

This function shares its premise and a similar strategy with deleteR, which we will
cover next. Both functions are needed as part of the overall algorithm, but because
extractMinR contains much fewer and simpler cases than deleteR, we will discuss it
first.

The premise shared with deleteR is that we will only handle deletion on red subtrees,
that is, trees with a red root. The reason we have this constraint is that in such a tree,
we can always remove a node without affecting black height.

2It will in fact return more terms which purely exist for type checking, but we will look at that in
time.

13

This property is similar to one important detail when inserting nodes into a valid Red-
Black tree: black height will only increase (by one) if after insertion and reconfiguration
of the tree, the root node has become red and must thus be recolored black, which only
happens at the very end of the algorithm. The recursive part of insertion doesn’t affect
black height at all.

We can mirror this for the removal of nodes: it is always possible to remove a node
from a tree with a red root, without decreasing black height. There are a few base
cases at black height 0 and 1, while the rest is a matter of always reconfiguring the
tree in such a way that the recursive call of extractMinR on a smaller, red-rooted tree
is possible.

Without this property, we would not only have to handle the different cases of a resulting
tree with a red or black root3, in other calling functions as well as in the recursive
call of extractMinR itself, but also distinguish on whether the black height changed or
remained the same, to avoid violating the black height invariant of Red-Black trees.

Thus, the overall strategy of extractMinR looks like this:

1. Pattern match against the top of the currently looked at subtree.

2. If we have reached the minimum (i.e., a base case), return a subtree without that
node.

3. Otherwise, perform a recursive call with a smaller red subtree.

4. Finally, rebuild a valid tree from the result and all nodes that weren’t part of the
recursive call and return it.

Note that it may not be possible to just take an existing subtree in step 3. Because we
need a red subtree, we may have to build a differently shaped one with existing nodes.
Moreover, the outcome of step 4 may cause some reconfiguration within the parent
step of recursion to incorporate the returned tree, possibly also distinguishing between
a red or black result.

Let us now specify extractMinR’s type. Quick reasoning may suggest the following
rather straightforward type at first:

extractMinR : @ {n β γ} Ñ Tree’ β γ red n

Ñ D λ c Ñ A � Tree’ β γ c n

3Please note that the result of extractMinR is not always a red tree. This would inductively mean
that a given black height would never decrease until no nodes are left, which is clearly nonsense.

14

This function would take a red tree and return the minimum as a value of key type A,
as well as a new tree, supposedly without the minimum, which lies within the same
bounds as the original one and which may now be either red or black.

While this is indeed what we want from an operational point of view, it throws away
some important information regarding the relationship between minimum and resulting
tree, and which we will actually need when type checking the overall algorithm. Namely,
if the tree itself was within the bounds given by β and γ, then the minimum key value
itself will be, too! Additionally, the new tree as a whole is now not only standing right
of its original bounds, but of course also right of its former minimum.

We will maintain proofs for these propositions during our definition, and return them
alongside the operational results of our function. The full type is thus:

extractMinR : @ {n β γ} Ñ Tree’ β γ red n

Ñ D2 λ min c Ñ

min isleftof β �

min isrightof γ �

Tree’ β (min :: γ) c n

We see the additional inclusion of proofs of type min isleftof β and min isrightof γ, and
that the lower bounds list of the returned tree has been prepended with min, the
minimum value.

Let us look at the base cases. For black height 0, the only possible red tree is a red
node with no children, which is the minimum and thus removed.

extractMinR (nr a pal par lf lf) = a , black , pal , par , lf

The removed element is returned as a minimum, and the proofs don’t need to be
manipulated.

The remaining two base cases are for black height 1. We handle those two cases directly:

extractMinR (nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb d pdl (b<d , pdr) lf lf)) =

a , black , pal , par , nb d pdl (trans a<b b<d , pdr)

(nr b (b<d , pbl) (a<b , pbr) lf lf) lf

15

b

a d

d

b

extractMinR (nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb d pdl (b<d , pdr)

(nr c (c<d , pcl) (b<c , pcr) lf lf) lf)) =

a , red , pal , par , nr c pcl (trans a<b b<c , pcr)

(nb b (b<c , pbl) (a<b , pbr) lf lf)

(nb d pdl (c<d , trans a<b b<d , pdr) lf lf)

b

a d

c

c

b d

Notice how we have to use transitivity to arrive at the new proofs, which are slightly
modified due to the tree’s new shape, and due to the returned tree’s modified type that
includes the minimum in its bounds (in both cases a). Also note that since we built
completely new trees and use no pre-existing subtrees anywhere, we don’t transform
any bounds yet (we effectively discard them, and the new nodes have bounds lists
dictated by their parents).

We have now covered two of three cases for black height 1: no grandchildren and one
red grandchild on the right. We could handle the remaining third case, which has a
red grandchild on the left black node, but we omit it because it overlaps with the first
recursive case, which we will take an in-depth look at.

extractMinR (nr c pcl pcr

(nb b pb pbr (nr a pal par t1 t2) t3) t4)

with extractMinR (nr a pal par t1 t2)

... | x , c’ , (x<b , x<c , pxl) , pxr , a’ = x , red , pxl , pxr ,

nr c pcl (x<c , pcr)

(nb b pb (x<b , pbr)

a’

(t3 <,, cover x<b ,))

(t4 <,, cover x<c ,)

16

c

b

a

t1 t2 t3

t4

extractMinR

If we reach this case, then the minimum must lay somewhere in the subtree a (which in
its simplest case may be a single red node, covered in our first case, hence the omission
of this as a base case).

In this case, we recursively call extractMinR on a. Because it is the left child of
its black parent b (which allows its left child to be red or black) and according to
extractMinR’s type the new tree a’ has the same black height as before, we can plug
in the result without any reconfiguration of the tree’s shape.

Yet we modify the proofs by prepending proof components of the form x �, where x
is the minimum returned. In turn we also have to transform the bounds of t3 and t4,
by prepending x on the lower bounds to them, to accomodate this change dictated by
their parents c and d. Why, if we still deal with the same shape?

The answer lies in the return type of the tree as specified by extractMinR. Recall
that we don’t return a tree corresponding to the old bounds, but a tree of type
Tree’ β (min :: γ) c n, which means that we prepend the new minimum to its lower
bounds. While the returned tree a’, coming from the function, already corresponds
to that type, the untouched trees t3 and t4 do not. We need to prove that they can
accomodate the new bounds contained in that type, which is done with a simple cover,
because the bound specifying that a node has to be left of the minimum is not a better
bound than any of the existing tighter bounds.

For the base cases handled before, this was more subtle, because the minimum is
contained within the matched nodes and not returned by a recursive call.

extractMinR (nr b pbl pbr

(nb a (a<b , pal) par (nb x1 px1l px1r t1l t1r) t2)

(nb d pdl (b<d , pdr)

(nr c (c<d , pcl) (b<c , pcr) t3 t4)

t5))

with extractMinR (nr a (a<b , pal) par (nb x1 px1l px1r t1l t1r) t2 <, cover b<c ,)

... | x , c’ , (x<b , x<c , pxl) , pxr , a’ = x , red , pxl , pxr ,

nr c pcl (trans x<b b<c , pcr)

(nb b (b<c , pbl) (x<b , pbr)

17

a’

(t3 <, keep skip <,, cover x<b ,))

(nb d pdl (c<d , trans x<b b<d , pdr)

(t4 <,, keep cover x<b , skip)

(t5 <,, cover c<d , keep keep cover x<b , skip))

b

a

t1 t2

d

c

t3 t4 t5

a

t1 t2

extractMinR

c

b

a’ t3

d

t4 t5

Starting with this case, the nodes we are matching against aren’t whole subtrees, but
merely segments, which have other subtrees attached to their end nodes. End nodes
are those nodes at the segment’s bottom which are matched by variable (i.e. wildcard)
and not by any node constructor. While the attached subtree’s black height may be
arbitrary, we only construct segments in shapes that accomodate subtrees of equal black
height to each other. We can therefore say that a segment encompasses a certain black
height, and the black height of all attached subtrees is the black height of the whole
visited subtree (including the segment on top) minus the black height encompassed by
the segment.

For this function, visiting segments which encompass black height 1 suffices.

In this case, as always, the minimum will be part of the subtree under the root a

(possibly a itself if both of its children are leaf nodes), so we must continue there.
However, in this case, a is black, so we cannot directly call extractMinR on it. Instead,
we reconfigure the whole tree to a different shape in which a is now a red node.

In such a reconfiguration, we must not only take care that the new shape still satisfies
all invariants (paying attention to black heights in particular), but also that the subtree
on which extractMinR is recursively applied remains a smaller subtree. Otherwise, the
algorithm might not terminate.

To achieve the reconfiguration, we apply extractMinR on a new red subtree with root
node a and then plug the result into the rest of the whole differently-shaped tree.

18

In addition to prepending the minimum to the tree bounds, some given subtrees’ bounds
need to be transformed to reflect their new position in the result tree.

For example, t3’s upper bounds previously stated that it was left of c and left of d,
whereas in the new shape it is now only left of c. A keep skip on the upper bound
fixes this. Similarly, t5 was found right of b (and right of d, which remains true), but
its new position puts it right of c instead. A cover c<d introduces the new lower
bound c and a skip at the end discards the now defunct lower bound b.

Another subtree t4 and even the subtree that gets passed to extractMinR are affected.
Note that for the latter one, we could also have applied the transformation to the result
instead.

d

b

a c

f

e g

red

black

b

a c

extractMinR

d

b’

a’ c’

f

e g

recolor

f

d

b’ e g

extractMinR (nr d pdl pdr

(nb b (b<d , pbl) pbr

(nb a pal par al ar)

c)

(nb f pfl (d<f , pfr)

(nb e (e<f , pel) (d<e , per) el er)

g))

with extractMinR (nr b (b<d , pbl) pbr (nb a pal par al ar) c)

... | x , red , (x<d , pxl) , pxr , nr b’ pbl’ pbr’ a’ c’ =

x , red , pxl , pxr ,

nr d pdl (x<d , pdr)

(nb b’ pbl’ pbr’ a’ c’)

(nb f pfl (d<f , pfr)

19

(nb e (e<f , pel) (d<e , per) el er)

g <,, cover x<d ,)

... | x , black , (x<d , pxl) , pxr , b’ =

x , black , pxl , pxr ,

nb f pfl (trans x<d d<f , pfr)

(nr d (d<f , pdl) (x<d , pdr)

(b’ <, cover d<f ,)

(nb e (e<f , pel) (d<e , per) el er <,, cover x<d ,))

(g <,, keep cover x<d , skip)

We follow a different approach in this case. Once again, the subtree in which the
minimum lies, a, is black instead of red. We can, however, not recolor it red, because
we cannot make the assumption that its left child is black as well, which would be a
precondition for turning a red.

But what we do know is that both a and c are black (the latter following directly from
the invariant that right children are always black). Therefore, the recoloration of its
parent b is possible, and we can apply extractMinR on the recolored subtree with root
b because it is still a smaller tree than the overall tree.

Note, however, that this recoloration changes the black height of b: by turning it from
a black node into a red node, we decremented its total black height by one and the
result of extractMinR, whose black height is the same as for its input, as well!

We therefore need to take care of a result with a decremented black height. In the case
that extractMinR returned a red tree, this is easy: We can always recolor a red node
to a black node. This reincrements the black height to its former value and we can
plug the subtree into its former place.

A black result is slightly less straightforward to handle. There is no immediate way to
increase its black height4, so we have to work with a result of differing black height.
But because its black height is only off by one, a simple left rotation of the whole tree
allows the incorporation of the result.

7 Deletion in red trees

The next part of the algorithm covers deletion of arbitrary nodes in red trees, another
part of the overall deletion algorithm (which, from a purely external point of view,

4There would, by the way, also not be any immediate way to decrease its black height. Turning it
red is not possible in general because we cannot make the assumption that a black root has two
black children.

20

differs to this part only in the fact that it deletes nodes in black trees, i.e. proper
LLRBs). The desired node will be selected by its key value. Because we are once again
removing a single element from a subtree with a red root, everything that was said in
the previous section with regard to maintaining tree properties applies. Specifically, we
can remove the node without changing the black height of the tree, so that we do not
have to handle black height differences of the result.

We call the function deleteR. As we want to pass it a key and a red tree in which to
remove the matching node, returning the modified tree as a result, the type is easily
specified as:

deleteR : @ {n β γ} Ñ A Ñ Tree’ β γ red n Ñ D λ c’ Ñ Tree’ β γ c’ n

Once again the black height stays invariant (bound as n in the type), and the function
may return a red or black tree as well.

A quick note about multiple nodes with the same key: Because we set bounds up as
values which are on one side of the strict order relation as opposed to a non-strict
relation like ¤, our tree type cannot accomodate more than one node with a given key
value. Any existing key in a tree imposes its value as bounds to its node’s children,
i.e. all left descendants must be strictly smaller and all right descendants strictly
greater. As one of the equal nodes would be a descendant of the other, it follows
directly that no two nodes in a tree can contain the same key without violating the
thusly maintained Search Tree Invariant. This, however, would be made possible by
just using the corresponding non-strict relation for the tree’s definition instead, by
allowing nodes to have direct children with equal keys, and would render the tree an
implementation of a multiset instead of a set.

The main difference between the algorithms of extractMinR and deleteR is that while
the former allows us to just recurse down into the leftmost subtree until a base case is
reached, the descending path of the latter is not as fixed, but rather determined by
comparisons done within each recursive step.

For trees with black height 0 or 1, we can just select the target node by performing a
few comparisons and return a tree with that node removed. We will handle such trees
as the base cases for our recursion.

As already mentioned, there is only one red tree with black height 0, which contains
one node. Handling it is just a matter of deciding whether to remove it:

deleteR .{0} x (nr a pal par lf lf) with x
?
� a

21

We remove the node if its key is equal to the given key a:

... | yes _ = , lf

And leave it if it’s not:

... | no _ = , nr a pal par lf lf

However, as we traverse the tree exactly once until a base case is reached, failure to find
the desired node in such a base case means that the tree did not contain a node with
the given key at all. We could easily return the information whether an actual deletion
occurred together with the tree5, but since it is not strictly necessary we omitted it in
this code for clarity of type and definition.

At black height 1, more comparisons are necessary to single out the desired node:

b

a c

c

b

x=a c

a

x=b b

a

x=c

deleteR .{1} x (nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb c pcl (b<c , pcr) lf lf)) with x
?
� a

... | yes _ = , nb c pcl pcr (nr b (b<c , pbl) pbr lf lf) lf

... | no _ with x
?
� b

... | yes _ = , nb c pcl pcr (nr a (trans a<b b<c , pal) par lf lf) lf

... | no _ with x
?
� c

... | yes _ = , nb b pbl pbr (nr a (a<b , pal) par lf lf) lf

... | no _ = , nr b pbl pbr (nb a (a<b , pal) par lf lf)

(nb c pcl (b<c , pcr) lf lf)

5Even if no deletion occurred, the tree is not necessarily untouched. While the tree remains equal in
the sense that it represents the same set as before, it may (and in most random trees will) vastly
change its shape due to the reconfigurations which happen while simply traversing it. To avoid
this, one may search the tree for an appropriate node before attempting a deletion. While this just
introduces a constant factor into the time complexity that inflicts no penalty on its asymptotical
bound, the implications for an amortized analysis may differ due to the varying balance factor of a
reshaped tree.

22

b

a d

c

c

b d

x=a c

a d

x=b b

a d

x=c b

a c

x=d

-- 1.5

deleteR .{1} x (nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb d pdl (b<d , pdr)

(nr c (c<d , pcl) (b<c , pcr) lf lf) lf)) with x
?
� a

... | yes _ = , nr c pcl pcr

(nb b (b<c , pbl) pbr lf lf)

(nb d pdl (c<d , pdr) lf lf)

... | no _ with x
?
� b

... | yes _ = , nr c pcl pcr

(nb a (trans a<b b<c , pal) par lf lf)

(nb d pdl (c<d , pdr) lf lf)

... | no _ with x
?
� c

... | yes _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb d pdl (trans b<c c<d , pdr) lf lf)

... | no _ with x
?
� d

... | yes _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb c pcl (b<c , pcr) lf lf)

... | no _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb d pdl (b<d , pdr) (nr c (c<d , pcl) (b<c , pcr) lf lf) lf)

c

b

a

d

23

c

b d

x=a c

a d

x=b b

a d

x=c b

a c

x=d

-- 1.6

deleteR .{1} x (nr c pcl pcr

(nb b (b<c , pbl) pbr

(nr a (a<b , a<c , pal) par lf lf) lf)

(nb d pdl (c<d , pdr) lf lf)) with x
?
� a

... | yes _ = , nr c pcl pcr

(nb b (b<c , pbl) pbr lf lf)

(nb d pdl (c<d , pdr) lf lf)

... | no _ with x
?
� b

... | yes _ = , nr c pcl pcr

(nb a (trans a<b b<c , pal) par lf lf)

(nb d pdl (c<d , pdr) lf lf)

... | no _ with x
?
� c

... | yes _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb d pdl (trans b<c c<d , pdr) lf lf)

... | no _ with x
?
� d

... | yes _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb c pcl (b<c , pcr) lf lf)

... | no _ = , nr c pcl pcr

(nb b (b<c , pbl) pbr

(nr a (a<b , a<c , pal) par lf lf) lf)

(nb d pdl (c<d , pdr) lf lf)

24

c

b

a

e

d

c

b e

d

x=a c

a e

d

x=b b

a e

d

x=c b

a e

c

x=d b

a d

c

x=e

deleteR .{1} x (nr c pcl pcr

(nb b (b<c , pbl) pbr

(nr a (a<b , a<c , pal) par lf lf) lf)

(nb e pel (c<e , per)

(nr d (d<e , pdl) (c<d , pdr) lf lf) lf)) with x
?
� a

... | yes _ = , nr c pcl pcr

(nb b (b<c , pbl) pbr lf lf)

(nb e pel (c<e , per)

(nr d (d<e , pdl) (c<d , pdr) lf lf) lf)

... | no _ with x
?
� b

... | yes _ = , nr c pcl pcr

(nb a (trans a<b b<c , pal) par lf lf)

(nb e pel (c<e , per)

(nr d (d<e , pdl) (c<d , pdr) lf lf) lf)

... | no _ with x
?
� c

... | yes _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb e pel (trans b<c c<e , per)

(nr d (d<e , pdl) (trans b<c c<d , pdr) lf lf) lf)

... | no _ with x
?
� d

... | yes _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb e pel (trans b<c c<e , per)

(nr c (c<e , pcl) (b<c , pcr) lf lf) lf)

... | no _ with x
?
� e

... | yes _ = , nr b pbl pbr

(nb a (a<b , pal) par lf lf)

(nb d pdl (trans b<c c<d , pdr)

25

(nr c (c<d , pcl) (b<c , pcr) lf lf) lf)

... | no _ = , (nr c pcl pcr

(nb b (b<c , pbl) pbr

(nr a (a<b , a<c , pal) par lf lf) lf)

(nb e pel (c<e , per)

(nr d (d<e , pdl) (c<d , pdr) lf lf) lf))

For trees with black height 2 or up, we will visit tree segments of black height 2 and
make comparisons to decide which path to take down in our recursion. As long as we
always recurse into a smaller subtree, the algorithm will eventually reach a base case
and terminate. But because we can only call deleteR on trees with red nodes, we may
have to reconfigure the visited tree portion accordingly.

Because we only look at trees with a red root, both of the root’s children are always
black. The difference may lie in the root’s left-left and right-left grandchild, both of
which maybe red or black. This gives a total of four cases for black height 2.

Let’s look at the simplest case of a red tree segment with black height 2, whose only
red node is the root itself:

d

b

a c

f

e g

-- 2.4

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar) (nb c pcl pcr cl cr))

(nb f pfl pfr

(nb e pef per el er) (nb g pgl pgr gl gr))) with compare x d

As mentioned, we have to compare the given key with the segment’s nodes to decide
how to continue. In this case, the possibilities are fairly simple. Besides the case that
the given key may be equal to the root’s key (which we will handle last), the path
may continue in either of the two subtrees left and right of the node. They are both
subtrees with a top that consists of three black nodes. Instead of inspecting them any
further, we just turn the respective’s subtree’s root red and perform a recursive call of
deleteR on it. Termination is once again guaranteed by its smaller size.

26

From a similar case in extractMinR, recall that turning a black subtree red decrements
its black height. While discussing that case, we discovered that this is no problem if
the function we applied afterwards returns a red result: we can turn the node back
to its original black color and thus also reincrement the subtree’s black height to its
former value. In the case that a black result was returned, however, we still need to
reconfigure the tree segment to a different shape.

Our first full subcase within this shape occurs when the node we look for lies somewhere
in the left subtree:

red

black

x d

b

a c

deleteR

d

b’

a’ c’

f

e g

recolor

f

d

b’ e g

-- 2.4.1

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

(nb c pcl pcr cl cr))

(nb f pfl (d<f , pfr)

(nb e pel per el er)

(nb g pgl pgr gl gr)))

| tri< x<d _ _ with deleteR x (nr b pbl pbr

(nb a pal par al ar)

(nb c pcl pcr cl cr))

... | red , (nr b’ pbl’ pbr’ a’ c’) = , nr d pdl pdr

(nb b’ pbl’ pbr’ a’ c’)

(nb f pfl (d<f , pfr)

(nb e pel per el er)

(nb g pgl pgr gl gr))

... | black , b’ = ,

let b’’ = b’ <, cover d<f ,

d’ = nr d (d<f , pdl) pdr b’’ (nb e pel per el er)

g’ = nb g pgl pgr gl gr <,, keep skip

in nb f pfl pfr d’ g’

27

The subcase occuring when we have to continue in the right tree is similar, but the
reconfiguration in the case of a black result looks simpler, since we can just swap
the color of root and left child (in the previous subcase, the Left Leaning invariant
prevented this).

red

black

x ¡ d

f

e g

deleteR

d

b

a c

f’

e’ g’

recolor

d

b

a c f’ bh reduced

-- 2.4.3

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

(nb c pcl pcr cl cr))

(nb f pfl (d<f , pfr)

(nb e pel per el er)

(nb g pgl pgr gl gr)))

| tri> _ _ x>d with deleteR x (nr f pfl (d<f , pfr)

(nb e pel per el er)

(nb g pgl pgr gl gr))

... | red , nr f’ pfl’ pfr’ e’ g’ = , nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

(nb c pcl pcr cl cr))

(nb f’ pfl’ pfr’ e’ g’)

... | black , nb f’ pfl’ pfr’ e’ g’ = , nb d pdl pdr

(nr b pbl pbr

(nb a pal par al ar)

(nb c pcl pcr cl cr))

(nb f’ pfl’ pfr’ e’ g’)

The only missing subcase is the one where the root’s key is equal to the one we are
looking for. Naively, we might just attempt to remove that node completely and

28

reassemble the remaining nodes into a new tree segment. This, however, is not possible
for the following reason:

The segment we visit in this case has four nodes on its lowest level. Attached to each of
these nodes are two subtrees, which results in 8 subtrees attached to the whole segment,
all with equal black height. We cannot change these black heights, as the only means
for doing so would be by recoloration, and even though we can assume a black color
for half of the subtree’s roots (because they are right children), we cannot assume that
their children are black, too, which would be a prerequisite for recoloring the subtrees
red. This means that we need to create a shape that continues to accomodate exactly
8 subtrees with equal black height. However, in LLRBs, there are no shapes with 6
nodes that fulfill this condition.

Because it is not possible to generally remove nodes from segments without affecting
the subtrees attached to the segment, the imperative algorithm described by Sedgewick
[2008] extracts the minimum of the subtree right of the matching node (in our case,
this subtree starts at f), deleting the minimum node in the process, and replaces the
key in the matching node with the obtained minimum.

We choose to follow a simpler approach, that fits well into our functional, pattern-
matching algorithm: instead of deleting the minimum, we simply reapply deleteR on a
smaller tree that still contains the node that is to be removed. As this is a smaller tree,
the algorithm will eventually reach a base case and remove the matching node–which
in this case has been handed all the way down from the tree segment in which it first
occurred.

In effect, instead of explicitly deleting the minimum (reshaping the tree in the process)
and replacing the key of the matching node, we continuously reshape the tree on our
way down until the matching node becomes part of a base case which will remove it.

In addition to making deleteR completely self-contained, this approach spares us from
proving that the right minimum can take the place in the node which contained the
matching key. It also makes any case in which the given key is found anywhere as part
of the visited segment similar to the others and in no way special.

-- 2.4.2

deleteR x (nr d pdl pdr

(nb b (b<d , pbl) pbr

(nb a pal par al ar)

(nb c (c<d , pcl) (b<c , pcr) cl cr))

(nb f pfl (d<f , pfr)

(nb e (e<f , pel) (d<e , per) el er)

(nb g pgl pgr gl gr)))

| tri� _ x�d _ with deleteR x (nr d (d<f , pdl) (b<d , pdr)

29

(nb c (c<d , pcl) (b<c , pcr) cl cr <, cover d<f ,)

(nb e (e<f , pel) (d<e , per) el er <,, cover b<d ,))

... | red , nr d’ (d<f’ , pdl’) (b<d’ , pdr’) c’ e’ = ,

let a’ = nb a pal par al ar <, cover b<d’ , keep keep skip

c’’ = c’ <, keep skip

b’ = nb b (b<d’ , pbl) pbr a’ c’’

e’’ = e’ <,, keep skip

g’ = nb g pgl pgr gl gr <,, cover d<f’ , keep keep skip

f’ = nb f pfl (d<f’ , pfr) e’’ g’

in nr d’ pdl’ pdr’ b’ f’

... | black , d’ = ,

let a’ = nb a pal par al ar <, keep cover d<f , skip

b’ = nr b (trans b<d d<f , pbl) pbr a’ d’

g’ = nb g pgl pgr gl gr <,, keep skip

in nb f pfl pfr b’ g’

After handling the case in which both grandchildren are black, we can take a look at
the opposite case, in which both grandchildren are red:

f

d

b

a c e

j

h

g i k

-- 2.3

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb j pjl pjr

(nr h phl phr g i)

k)) with compare x d

Because, as we will see, there are more subcases to handle, more comparisons are made
to find the right subcase. We start by comparing the given key with node d. It turns
out that a really simple subcase emerges if the given key is smaller than d: the subtree
left of d is already a red subtree, so we can just call deleteR on it. Moreover, for the
fact alone that it is a red subtree in its present position, the segment’s shape is able to

30

accomodate a red or a black subtree at this position, so we can directly plug the result
subtree without any change of shape!

It’s immediately visible that this also applies to subtree h, which is in a similar position,
but due to our chaining of comparisons we will handle that later.

x d

b

a cdeleteR

f

d

a’

e

j

h

g i k

-- 2.3.1

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb j pjl pjr

(nr h phl phr g i)

k))

| tri< x<d _ _ with deleteR x (nr b pbl pbr a c)

... | _ , b’ = , nr f pfl pfr (nb d pdl pdr b’ e) (nb j pjl pjr (nr h phl phr g i) k)

In the case that d is the matching node:

red

black

x � d

d

c e

deleteR

f

d’

b

a c’ e’

j

h

g i k

f

b

a d’

j

h

g i k

31

-- 2.3.2a

deleteR x (nr f pfl pfr

(nb d (d<f , pdl) pdr

(nr b (b<d , b<f , pbl) pbr a c)

e)

(nb j pjl pjr

(nr h phl phr g i)

k))

| tri� _ x�d _ with deleteR x (nr d (d<f , pdl) (b<d , pdr) c (e <,, cover b<d ,))

... | red , nr d’ (d<f’ , pdl’) (b<d’ , pdr’) c’ e’ = ,

let e’’ = e’ <,, keep skip

a’ = a <, cover b<d’ , keep keep skip

b’ = nr b (b<d’ , b<f , pbl) pbr a’ c’

d’’ = nb d’ (d<f’ , pdl’) pdr’ b’ e’’

in nr f pfl pfr d’’ (nb j pjl pjr (nr h phl phr g i) k)

... | black , d’ = ,

let a’ = a <, keep skip

b’ = nb b (trans b<d d<f , pbl) pbr a’ d’

in nr f pfl pfr b’ (nb j pjl pjr (nr h phl phr g i) k)

And if the given key is greater than the value in d, we start comparing with the root f
for some further subcases:

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb j pjl pjr

(nr h phl phr g i)

k))

| tri> _ _ x>d with compare x f

Let our given key be greater than d, but still less than f. A matching node must be
somewhere in the subtree whose root is e. We can just recycle the previous subcase,
because the tree on which the recursive call is applied includes e:

32

red

black

x ¡ d, x f

d

c e

deleteR

f

d’

b

a c’ e’

j

h

g i k

f

b

a d’

j

h

g i k

-- 2.3.2b

deleteR x (nr f pfl pfr

(nb d (d<f , pdl) pdr

(nr b (b<d , b<f , pbl) pbr a c)

e)

(nb j pjl pjr

(nr h phl phr g i)

k))

| tri> _ _ x>d | tri< x<f _ _ with deleteR x (nr d (d<f , pdl) (b<d , pdr)

c

(e <,, cover b<d ,))

... | red , nr d’ (d<f’ , pdl’) (b<d’ , pdr’) c’ e’ = ,

let e’’ = e’ <,, keep skip

a’ = a <, cover b<d’ , keep keep skip

b’ = nr b (b<d’ , b<f , pbl) pbr a’ c’

d’’ = nb d’ (d<f’ , pdl’) pdr’ b’ e’’

in nr f pfl pfr d’’ (nb j pjl pjr (nr h phl phr g i) k)

... | black , d’ = ,

let a’ = a <, keep skip

b’ = nb b (trans b<d d<f , pbl) pbr a’ d’

in nr f pfl pfr b’ (nb j pjl pjr (nr h phl phr g i) k)

A matching root is handled as follows. Again, we just pass the key down until we reach
a base case and incorporate the result:

33

red

black

x � f

f

e g

deleteR

f’

d

b

a c e’

j

h

g’ i k

d

b

a c

j

h

f’ i k

-- 2.3.3

deleteR x (nr f pfl pfr

(nb d (d<f , pdl) pdr

(nr b (b<d , b<f , pbl) pbr a c)

e)

(nb j pjl (f<j , pjr)

(nr h (h<j , phl) (f<h , phr) g i)

k))

| tri> _ _ x>d | tri� _ x�f _ with deleteR x (nr f (f<h , f<j , pfl) (d<f , pfr)

(e <, cover f<j , cover f<h ,)

(g <,, cover d<f ,))

... | red , nr f’ (f<h’ , f<j’ , pfl’) (d<f’ , pfr’) e’ g’ = ,

let e’’ = e’ <, keep skip skip

g’’ = g’ <,, keep skip

k’ = k <,, cover f<j’ , keep keep skip

i’ = i <,, cover f<h’ , keep keep skip

h’ = nr h (h<j , phl) (f<h’ , phr) g’’ i’

j’ = nb j pjl (f<j’ , pjr) h’ k’

a’ = a <, keep cover d<f’ , keep keep skip

c’ = c <, cover d<f’ , keep keep skip

b’ = nr b (b<d , trans b<d d<f’ , pbl) pbr a’ c’

d’ = nb d (d<f’ , pdl) pdr b’ e’’

in nr f’ pfl’ pfr’ d’ j’

... | black , f’ = ,

let k’ = k <,, keep cover d<f , skip

i’ = i <,, keep cover d<f , skip

h’ = nr h (h<j , phl) (trans d<f f<h , phr) f’ i’

34

j’ = nb j pjl (trans d<f f<j , pjr) h’ k’

b’ = nb b (b<d , b<f , pbl) pbr a c <, keep skip

in nr d pdl pdr b’ j’

As we go further to the right of the segment, we now need another comparison:

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb j pjl pjr

(nr h phl phr g i)

k))

| tri> _ _ x>d | tri> _ _ x>f with compare x j

If the node lies somewhere in h’s subtree, the case is very similar to b’s subtree, we can
just call deleteR on h and plug the result in:

x ¡ f, x j

h

g i

deleteR

f

d

b

a c e

j

h’

k

-- 2.3.4

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb j pjl pjr

(nr h phl phr g i)

k))

| tri> _ _ x>d | tri> _ _ x>f | tri< x<j _ _ with deleteR x (nr h phl phr g i)

... | _ , h’ = , nr f pfl pfr (nb d pdl pdr (nr b pbl pbr a c) e) (nb j pjl pjr h’ k)

35

The remaining case is when we have to continue right, at j or k.

red

black

x ¥ j

j

i k

deleteR

f

d

b

a c e

j’

h

g i’ k’

f

d

b

a c e

h

g j’

-- 2.3.5a

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb j pjl (f<j , pjr)

(nr h (h<j , phl) (f<h , phr) g i)

k))

| tri> _ _ x>d | tri> _ _ x>f | _ with deleteR x (nr j pjl (h<j , f<j , pjr)

i

(k <,, cover h<j ,))

... | red , nr j’ pjl’ (h<j’ , f<j’ , pjr’) i’ k’ = ,

let k’’ = k’ <,, keep skip

g’ = g <, cover h<j’ , keep keep skip

h’ = nr h (h<r , phl) (f<h , phr) g’ i’

j’’ = nb j’ pjl’ (f<j’ , pjr’) h’ k’’

in nr f pfl pfr (nb d pdl pdr (nr b pbl pbr a c) e) j’’

... | black , j’ = ,

let g’ = g <, keep skip

h’ = nb h phl (f<h , phr) g’ j’

in nr f pfl pfr (nb d pdl pdr (nr b pbl pbr a c) e) h’

Remaining are the cases where either but not both of the root’s grand children are
read. They are handled in a similar manner.

36

7.1 Red Grandchild Right

d

b

a c

h

f

e g i

-- 2.2

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

c)

(nb h phl phr

(nr f pfl pfr e g) i)) with compare x d

red

black

x d

b

a c

deleteR

d

b’

a’ c’

h

f

e g i

recolor

f

d

b’ e

h

g i

-- 2.2.1

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

c)

(nb h phl (d<h , phr)

(nr f (f<h , pfl) (d<f , pfr) e g)

37

i))

| tri< x<d _ _ with deleteR x (nr b pbl pbr (nb a pal par al ar) c <, cover d<f ,)

... | red , nr b’ pbl’ pbr’ a’ c’ = ,

let b’’ = nb b’ pbl’ pbr’ a’ c’ <, keep skip

in nr d pdl pdr b’’ (nb h phl (d<h , phr) (nr f (f<h , pfl) (d<f , pfr) e g) i)

... | black , b’ = ,

let e’ = e <, keep skip

d’ = nb d (d<f , pdl) pdr b’ e’

g’ = g <,, keep skip

i’ = i <,, cover f<h , keep keep skip

h’ = nb h phl (f<h , phr) g’ i’

in nr f pfl pfr d’ h’

38

red

black

x � d

d

c e

deleteR

f

d’

b

a c’ e’

h

g i

f

b

a d’

h

g i

-- 2.2.2

deleteR x (nr d pdl pdr

(nb b (b<d , pbl) pbr

(nb a pal par al ar)

c)

(nb h phl (d<h , phr)

(nr f (f<h , pfl) (d<f , pfr) e g)

i))

| tri� _ x�d _ with deleteR x (nr d (d<f , pdl) (b<d , pdr)

(c <, cover d<f ,)

(e <, keep skip <,, cover b<d ,))

... | red , nr d’ pdl’ (b<d’ , pdr’) c’ e’ = ,

let a’ = nb a pal par al ar <, cover b<d’ , keep keep cover d<f , skip

b’ = nr b (b<d’ , trans b<d d<f , pbl) pbr a’ c’

e’’ = e’ <,, keep skip

d’’ = nb d’ pdl’ pdr’ b’ e’’

g’ = g <,, keep skip

i’ = i <,, cover f<h , keep keep skip

h’ = nb h phl (f<h , phr) g’ i’

in nr f pfl pfr c’’ h’

... | black , d’ = ,

let a’ = nb a pal par al ar <, keep cover d<f , skip

b’ = nb b (trans b<d d<f , pbl) pbr a’ d’

g’ = g <,, keep skip

i’ = i <,, cover f<h , keep keep skip

h’ = nb h phl (f<h , phr) g’ i’

in nr f pfl pfr b’ h’

39

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

c)

(nb h phl phr

(nr f pfl pfr e g) i))

| tri> _ _ x>d with compare x h

x ¡ d, x h

f

e g

deleteR

d

b

a c

h

f’ i

-- 2.2.3

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

c)

(nb h phl phr

(nr f pfl pfr e g) i))

| tri> _ _ x>d | tri< x<h _ _ with deleteR x (nr f pfl pfr e g)

... | _ , f’ = , nr d pdl pdr (nb b pbl pbr (nb a pal par al ar) c) (nb h phl phr f’ i)

40

red

black

x ¥ h

h

g i

deleteR

d

b

a c

h’

f

e g’ i’

recolor

d

b

a c

f

e h’

-- 2.2.4

deleteR x (nr d pdl pdr

(nb b pbl pbr

(nb a pal par al ar)

c)

(nb h phl phr

(nr f (f<h , pfl) (d<f , pfr) e g) i))

| tri> _ _ x>d | _ with deleteR x (nr h phl (f<h , phr)

g

(i <,, cover f<h ,))

... | red , nr h’ phl’ (f<h’ , d<h’ , phr’) g’ i’ = ,

let e’ = e <, cover f<h’ , keep keep skip

f’ = nr f (f<r , pfl) (d<f , pfr) e’ g’

i’’ = i’ <,, keep skip

h’’ = nb h’ phl’ (d<r , phr’) f’ i’’

in nr d pdl pdr (nb b pbl pbr (nb a pal par al ar) c) h’’

... | black , h’ = ,

let e’ = e <, keep skip

f’ = nb f pfl (d<f , pfr) e’ h’

in nr d pdl pdr (nb b pbl pbr (nb a pal par al ar) c) f’

41

7.2 Red Grandchild Left

f

d

b

a c e

h

g i

-- 2.1

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb h phl phr

(nb g pgl pgr gl gr)

i)) with compare x d

x d

b

a c

deleteR

f

d

b’ e

h

g i

-- 2.1.1

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb h phl phr

(nb g pgl pgr gl gr)

i))

| tri< x<d _ _ with deleteR x (nr b pbl pbr a c)

... | _ , b’ = , nr f pfl pfr (nb d pdl pdr b’ e) (nb h phl phr (nb g pgl pgr gl gr) i)

42

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b pbl pbr a c)

e)

(nb h phl phr

(nb g pgl pgr gl gr)

i))

| tri> _ _ x>d with compare x f

red

black

x ¡ d, x f

d

c e

deleteR

f

d’

b

a c’ e’

h

g i

f

b

a d’

h

g i

-- 2.1.2

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b (b<d , b<f , pbl) pbr a c)

e)

(nb h phl phr

(nb g pgl pgr gl gr)

i))

| tri> _ _ x>d | tri< x<f _ _ with deleteR x (nr d pdl (b<d , pdr)

c

(e <,, cover b<d ,))

... | red , nr d’ (d<f’ , pdl’) (b<d’ , pdr’) c’ e’ = ,

let e’’ = e’ <,, keep skip

a’ = a <, cover b<d’ , keep keep skip

b’ = nr b (b<d’ , b<f , pbl) pbr a’ c’

d’’ = nb d’ (d<f’ , pdl’) pdr’ b’ e’’

in nr f pfl pfr d’’ (nb h phl phr (nb g pgl pgr gl gr) i)

43

... | black , d’ = ,

let a’ = a <, cover b<f , keep skip skip

b’ = nb b (b<f , pbl) pbr a’ d’

in nr f pfl pfr b’ (nb h phl phr (nb g pgl pgr gl gr) i)

44

x � f

f

e g

deleteR

d

b

a c

h

f’ i

-- 2.1.3

deleteR x (nr f pfl pfr

(nb d (d<f , pdl) pdr

(nr b (b<d , b<f , pbl) pbr a c)

e)

(nb h phl (f<h , phr)

(nb g pgl pgr gl gr)

i))

| tri> _ _ x>d | tri� _ x�f _ with deleteR x (nr f (f<h , pfl) (d<f , pfr)

(e <, cover f<h ,)

(nb g pgl pgr gl gr <,, cover d<f ,))

... | _ , f’ = ,

let b’ = nb b (b<d , b<f , pbl) pbr a c <, keep skip

i’ = i <,, keep cover d<f , skip

h’ = nb h phl (trans d<f f<h , phr) f’ i’

in nr d pdl pdr b’ h’

45

red

black

x ¡ f

h

g i

deleteR

d

b

a c

h’

f

e g’ i’

d

b

a c

f

e h’

-- 2.1.4

deleteR x (nr f pfl pfr

(nb d (d<f , pdl) pdr

(nr b (b<d , b<f , pbl) pbr a c)

e)

(nb h phl (f<h , phr)

(nb g pgl pgr gl gr)

i))

| tri> _ _ x>d | tri> _ _ x>f with deleteR x (nr h phl (f<h , phr)

(nb g pgl pgr gl gr)

i

<,, cover d<f ,)

... | red , nr h’ phl’ (f<h’ , d<h’ , phr’) g’ i’ = ,

let b’ = nb b (b<d , b<f , pbl) pbr a c <, keep skip

e’ = e <, cover f<h’ ,

f’ = nr f (f<r , pfl) (d<f , pfr) e’ g’

i’’ = i’ <,, keep skip

h’’ = nb h’ prl (d<h’ , phr’) f’ i’’

in nr d pdl pdr b’ h’’

... | black , h’ = ,

let b’ = nb b (b<d , b<f , pbl) pbr a c <, keep skip

f’ = nb f pfl (d<f , pfr) e h’

in nr d pdl pdr b’ f’

46

red

black

x � d

d

c e

deleteR

f

d’

b

a c’ e’

h

g i

f

b

a d’

h

g i

deleteR x (nr f pfl pfr

(nb d pdl pdr

(nr b (b<d , b<f , pbl) pbr a c)

e)

(nb h phl phr

(nb g pgl pgr gl gr)

i))

| tri� _ x�d _ with deleteR x (nr d pdl (b<d , pdr)

c

(e <,, cover b<d ,))

... | red , nr d’ (d<f’ , pdl’) (b<d’ , pdr’) c’ e’ = ,

let e’’ = e’ <,, keep skip

a’ = a <, cover b<r , keep keep skip

b’ = nr b (b<d’ , b<f , pbl) pbr a’ c’

d’’ = nb d’ (d<f’ , pdl’) pdr’ b’ e’’

in nr f pfl pfr d’’ (nb h phl phr (nb g pgl pgr gl gr) i)

... | black , d’ = ,

let a’ = a <, cover b<f , keep skip skip

b’ = nb b (b<f , pbl) pbr a’ d’

in nr f pfl pfr b’ (nb h phl phr (nb g pgl pgr gl gr) i)

47

8 Putting it all together

We now have two important parts of our algorithm, removal of the minimal node in
a red subtree and deletion of arbitrary nodes in a red subtree. But since our goal is
to artibtrarily delete nodes in a correct LLRB, which is first and foremost a tree with
a black root, we need to put this two parts together in another function, and handle
some additional cases emerging from it.

This function will delete arbitary keys in black subtrees (we will introduce a simple
wrapper function that operates on the exported, simple Tree datatype instead of
subtrees of type Tree’ later on). A first attempt to write its type may lead to the
following signature:

deleteB : @ {n β γ} Ñ A Ñ Tree’ β γ black n Ñ Tree’ β γ black ?

It takes a key of type A and a black subtree and returns a possibly modified tree. We
can constrain the returned tree to be black, because a red tree would just need a simple
recoloration to be turned into a black one. We haven’t filled out its resulting black
height, however. It can’t be fixed, because as shown earlier, it is not generally possible
to remove a node from a black subtree without potentially decrementing its black
height.

To take this into account, we include an additional bit that indicates whether the
subtree’s black height was decremented or not. To allow a result with such a decremented
black height, we need to specify the given tree’s blackheight as suc n instead of n, so
that the returned tree can be either of black height suc n or n, depending on the bit z.
This also implies that trees given to deleteB must have a black height of at least 1.
The only valid (black-rooted) LLRB for which this isn’t true is the empty one, but we
can handle this very simple special case later, in the outer wrapper function.

The full type is thus:

-- the returned bit z indicates whether the tree’s black height has shrunk

deleteB : @ {n β γ} Ñ A Ñ Tree’ β γ black (suc n) Ñ D λ z

Ñ Tree’ β γ black (if z then n else (suc n))

While this type seems unwieldy for general use, recall that the exported Tree data type
contains no indication of any black height, hence leading us to discard the unnecessary
bit and black height in the outer wrapper, which yields to a simple and intuitive type.

As always, we will first look at the simple base cases (just one in this function), before
dealing with the more complex recursive cases.

The simple base case is a tree with just one black node, which may be removed:

48

-- case terminal node

deleteB x (nb a pal par lf lf) with x
?
� a

... | yes _ = true , lf -- shrunk (black height reduced)

... | no _ = false , nb a pal par lf lf -- not shrunk (black height preserved)

On to bigger trees, we must now look at the root’s left child, which is either red or
black. A subtree with a black child is easily handled, as we can just recolor its root
red and call deleteR on it, which does all the work! Whether we have to decrement
the black height or not depends on the color of deleteR’s result. If it is red, we can
immediately recolor it black and black height has been preserved. An already black
result instead leads to a decreased black height.

-- case 2-node: color red and call deleteR

deleteB x (nb b pbl pbr (nb a pal par al ar) br)

with deleteR x (nr b pbl pbr (nb a pal par al ar) br)

... | red , nr r prl prr rl rr = false , nb r prl prr rl rr -- red --> black

... | black , nb r prl prr rl rr = true , nb r prl prr rl rr -- already black ==> shrunk

If the root’s left child is red, a little more work is required, as we cannot recolor the
root without violating the Left-Leaning Red-Black invariant. We start by checking
which path we must follow:

-- case 3-node

deleteB x (nb b pbl pbr (nr a pal par al ar) br) with compare x b

Continuing left is the easiest case. The left subtree is red, so we can again just call
deleteR on it. Because, this time, we don’t care about the color of the result–we can
plug it in either way–no corrections are necessary.

-- delete in left (red) subtree

deleteB x (nb b pbl pbr (nr a pal par al ar) br) | tri< x<b _ _

with (deleteR x (nr a pal par al ar))

... | _ , bl’ = false , nb b pbl pbr bl’ br -- whatever comes back, no shrinking

The right subtree, however, is forcefully black, so this again requires special attention.
But first, we handle the case of a missing right subtree, i.e. we would have to continue
there, but there is only a leaf. This obviously means that the key isn’t in the tree and
nothing happens:

49

-- would delete in right (black) subtree, but it is a leaf

deleteB x (nb b pbl pbr (nr a pal par al ar) lf) | tri> _ _ x>b =

false , (nb b pbl pbr (nr a pal par al ar) lf)

On to a “true” black subtree. We can recursively call deleteB on it. Note that unlike
extractMinR and deleteR, this function may return a tree of a differing black height,
which creates more cases.

-- delete in right (black) subtree

deleteB x (nb h phl phr (nr b pbl pbr bl br) (nb i pil pir il ir)) | tri> x<h x�h x>h

with (deleteB x (nb i pil pir il ir))

Reassembling is simple, without any needed corrections, if the returned tree retained
its former black height:

-- no shrinkage, just reassemble

deleteB x (nb h phl phr (nr b pbl pbr bl br) (nb i pil pir il ir)) | tri> x<h x�h x>h | false , r =

false , nb h phl phr (nr b pbl pbr bl br) r

Otherwise, we need to reconfigure the tree accordingly:

-- if there was shrinkage, we need to merge with right brother or parts of it

{- case: right brother f is a 2-node

[h] [b]

(b) [a] [h]

[a] [f] ---> (f)

[d] [g] [r] [d] [g] [r]

-}

deleteB x (nb h phl phr (nr b (b<h , pbl) pbr a (nb {leftSonColor = black} f pfl pfr d g)) (nb i pil pir il ir)) | tri> x<h x�h x>h | true , r =

false , nb b pbl pbr

(a <, keep skip)

(nb h phl (b<h , phr)

(nr f pfl pfr d g <,)

(r <,, cover b<h ,))

{- case: right brother f is a 3-node

[h] [f]

(b) (b)

[a] [f] ---> [a] [d] [h]

(d)

50

[c] [e] [g] [r] [c] [e] [g] [r]

-}

deleteB x (nb h phl phr (nr b (b<h , pbl) pbr a (nb f (f<h , pfl) (b<f , pfr) (nr d pdl pdr c e) g)) (nb i pil pir il ir)) | tri> x<h x�h x>h | true , r =

false , nb f pfl pfr

(nr b (b<f , pbl) pbr

(a <, cover b<f , keep keep skip)

(nb d pdl pdr c e <, keep skip))

(nb h phl (f<h , phr)

(g <,, keep skip)

(r <,, cover f<h ,))

This concludes what may happen if deletion continued in the right subtree, and leaves
only the case where the given key was the root itself. Our strategy is simple: we extract
the minimum node from the right subtree (extractMinR comes into play), replace the
root’s key with it and merge the new right subtree back into the tree, depending on its
color and the shape of the left subtree:

-- delete root

{- case root is a terminal 3-node -}

deleteB x (nb d pdl pdr (nr b (b<d , pbl) pbr lf lf) lf) | tri� _ x�d _ =

false , nb b pbl pbr lf lf

{- case right son is a 2-node, left-right grandchild is a 2-node

[d]

(b)

[a] [c] [h] call extractMinR (h)

[cl] [cr] [f] [i] [f] [i]

-}

deleteB x (nb d pdl pdr (nr b (b<d , pbl) pbr a (nb {leftSonColor = black} c pcl pcr cl cr)) (nb {leftSonColor = black} h phl phr f i)) | tri� _ x�d _ with extractMinR (nr h phl phr f i)

... | min , black , pminl , (d<min , pminr) , r =

false , let a’ = a <, keep skip

c’ = nr c pcl pcr cl cr <, cover d<min , skip

r’’ = r <,, keep cover b<d , skip

d’ = nb min pminl (trans b<d d<min , pminr) c’ r’’

in nb b pbl pbr a’ d’

... | min , red , pminl , (d<min , pminr) , nr r prl prr rl rr =

false , let r’ = nb r prl prr rl rr <,, keep skip

b’ = nr b (b<d , pbl) pbr a (nb c pcl pcr cl cr) <, cover d<min , skip

in nb min pminl pminr b’ r’

{- case right son is a 2-node, left-right grandchild is a 3-node

[d]

51

(b)

[a] [c] [h] call extractMinR (h)

(cl) [cr] [f] [i] [f] [i]

[clr] [crr]

-}

deleteB x (nb d pdl pdr (nr b (b<d , pbl) pbr a (nb c (c<d , pcl) (b<c , pcr) (nr cl pcll pclr cll clr) cr)) (nb {leftSonColor = black} h phl phr f i)) | tri� _ x�d _ with extractMinR (nr h phl phr f i)

... | min , black , pminl , (d<min , pminr) , r =

false , let a’ = a <, cover b<c , keep keep skip

cl’ = nb cl pcll pclr cll clr <, keep skip

b’ = nr b (b<c , pbl) pbr a’ cl’

cr’ = cr <,, keep skip <, cover d<min , skip

r’ = r <,, keep cover c<d , skip

d’ = nb min pminl (trans c<d d<min , pminr) cr’ r’

in nb c pcl pcr b’ d’

... | min , red , pminl , (d<min , pminr) , nr r prl prr rl rr =

false , let r’ = nb r prl prr rl rr <,, keep skip

b’ = nr b (b<d , pbl) pbr a (nb c (c<d , pcl) (b<c , pcr) (nr cl pcll pclr cll clr) cr) <, cover d<min , skip

in nb min pminl pminr b’ r’

{- case right son is a 3-node

[d]

(b)

[a] [c] [h]

(f) call extractMinR (f)

[e] [g] [i] [e] [g]

-}

deleteB x (nb d pdl pdr (nr b pbl pbr a c) (nb h phl (d<h , phr) (nr f (f<h , pfl) (d<f , pfr) e g) i)) | tri� _ x�d _ with extractMinR (nr f (f<h , pfl) (d<f , pfr) e g)

... | result with extractMinR (nr f (f<h , pfl) (d<f , pfr) e g)

... | min , _ , (min<h , pminl) , (d<min , pminr) , r =

false , let r’ = r <,, keep skip

i’ = i <,, cover min<h , keep keep skip

h’ = nb h phl (min<h , phr) r’ i’

b’ = nr b pbl pbr a c <, cover d<min , skip

in nb min pminl pminr b’ h’

Finally, having everthing together, we can write the wrapper function, which takes
an opaque Tree and applies deleteB to its inner Tree’ value. Discarding all internal
type information, it is suitable for exporting and we just call it delete:

delete : A Ñ Tree Ñ Tree

delete x (tree lf) = tree lf

delete x (tree (nb a pal par al ar)) with deleteB x (nb a pal par al ar)

... | _ , result = tree result

52

9 Conclusion

We have shown a purely functional algorithm for deletion, and have shown how a
dependently typed language like Agda can ensure the validity and totality of all
occurring cases and their subcases. To help us find proofs for bound implication in a
mostly automatic manner, we have modified the domain specific language specified by
Ek et al. [2009] to contain a representation of bounds using two lists, for upper and
lower bounds respectively, instead of one.

We ensured termination by only allowing smaller subtrees when recursing. Once Sized
Types work as intended in Agda, additional work can be put into integrating them in
this source code, to allow for automatic termination checking by Agda.

References

Linus Ek, Ola Holmström, and Stevan Andjelkovic. Formalizing arne andersson
trees and left-leaning red-black trees in agda. Technical report, Chalmers Tekniska
Högskola, 2009.

R. Sedgewick. Left-leaning red-black trees. In Dagstuhl Workshop on Data Structures.
Citeseer, 2008.

Stefan Kahrs. Red-black trees with types. J. Funct. Program., 11(4):425–432, 2001.

Chris Okasaki. Red-black trees in a functional setting. J. Funct. Program., 9(4):471–477,
1999.

53

